Hodge Theory and Geometry
نویسندگان
چکیده
This expository paper is an expanded version of a talk given at the joint meeting of the Edinburgh and London Mathematical Societies in Edinburgh to celebrate the centenary of the birth of Sir William Hodge. In the talk the emphasis was on the relationship between Hodge theory and geometry, especially the study of algebraic cycles that was of such interest to Hodge. Special attention will be placed on the construction of geometric objects with Hodge-theoretic assumptions. An objective in the talk was to make the following points:
منابع مشابه
Introduction to Hodge Theory
This course will present the basics of Hodge theory aiming to familiarize students with an important technique in complex and algebraic geometry. We start by reviewing complex manifolds, Kahler manifolds and the de Rham theorems. We then introduce Laplacians and establish the connection between harmonic forms and cohomology. The main theorems are then detailed: the Hodge decomposition and the L...
متن کاملA field-theoretic model for Hodge theory
We demonstrate that the four (3 + 1)-dimensional (4D) free Abelian 2-form gauge theory presents a tractable field theoretical model for the Hodge theory where the well-defined symmetry transformations correspond to the de Rham cohomological operators of differential geometry. The conserved charges, corresponding to the above continuous symmetry transformations, obey an algebra that is reminisce...
متن کاملAnabelian Geometry in the Hodge-Arakelov Theory of Elliptic Curves
The purpose of the present manuscript is to survey some of the main ideas that appear in recent research of the author on the topic of applying anabelian geometry to construct a “global multiplicative subspace”— i.e., an analogue of the well-known (local) multiplicative subspace of the Tate module of a degenerating elliptic curve. Such a global multiplicative subspace is necessary to apply the ...
متن کاملHodge-Tate Theory
This thesis aims to expose the amazing sequence of ideas, concerning p-adic representations coming from geometry, that form the heart of what was called Hodge-Tate theory. This subject, initiated by Tate in the late ’60s in analogy to classical Hodge theory, leads in to the now vast and highly fruitful program of p-adic Hodge Theory. The central result of the theory is the Hodge-Tate decomposit...
متن کاملA Survey of the Hodge-Arakelov Theory of Elliptic Curves I
The purpose of the present manuscript is to give a survey of the Hodge-Arakelov theory of elliptic curves (cf. [Mzk1,2]) — i.e., a sort of “Hodge theory of elliptic curves” analogous to the classical complex and p-adic Hodge theories, but which exists in the global arithmetic framework of Arakelov theory — as this theory existed at the time of the workshop on “Galois Actions and Geometry” held ...
متن کامل